Калькулятор логических выражений


Программа предназначена для получения таблиц истинности логических функций с числом переменных от одной до пяти. Логической (булевой) функцией n переменных y = f(x1, x2, …, xn) называется такая функция, у которой все переменные и сама функция могут принимать только два значения: 0 и 1.


Шпаргалка по работе с калькулятором.

Переменные, которые могут принимать только два значения 0 и 1 называются логическими переменными (или просто переменными). Заметим, что логическая переменная х может подразумевать под числом 0 некоторое высказывание, которое ложно, и под числом 1 высказывание, которое истинно.

Из определения логической функции следует, что функция переменных – это отображение Bn в B, которое можно задать непосредственно таблицей, называемой таблицей истинности данной функции.

Из определения логической функции следует, что функция n переменных – это отображение Bn в B

Основные функции логики – это функции двух переменных z = f(x,y).

Число этих функций равно 24 = 16. Перенумеруем и расположим их в естественном порядке.

Программа предназначена для получения таблиц истинности логических функций с числом переменных от одной до пяти.

Рассмотрим более подробно эти функции. Две из них f0 = 0 и f15 = 1 являются константами. Функции f3f5f10 и f12 являются по существу функциями одной переменной.

Наиболее важные функции двух переменных имеют специальные названия и обозначения.

1) f1 – конъюнкция (функция И)
Заметим, что конъюнкция – это фактически обычное умножение (нулей и единиц). Эту функцию обозначают x&y;

2) f7 – дизъюнкция (функция или). Обозначается V.

3) f13 – импликация (следование). Обозначается ->
Это очень важная функция, особенно в логике. Ее можно рассматривать следующим образом: если х = 0 (т. е. х “ложно”), то из этого факта можно вывести и “ложь”, и “истину” (и это будет правильно), если у = 1 (т. е. у “истинно”), то истина выводится и из “лжи” и из “истины”, и это тоже правильно. Только вывод “из истины ложь” является неверным. Заметим, что любая теорема всегда фактически содержит эту логическую функцию;

4) f6 – сложение по модулю 2. Обозначается знаком “+” или знаком “+” в кружке.

5) f9 – эквивалентность или подобие. Эта f9 = 1 тогда и только тогда, когда х = у. Обозначается х ~ у.

6) f14 – штрих Шеффера. Иногда эту функцию называют “не и” (так как она равна отрицанию конъюнкции). Обозначается x|y.

7) f8 – стрелка Пирса (иногда эту функцию называют штрих Лукасевича).

Три оставшиеся функции, (f2 , f4 и f11) особого обозначения не имеют.

Заметим, что часто в логике рассматриваются функции от функций, т.е. суперпозиции перечисленных выше функций. При этом последовательность действий указывается (как обычно) скобками.

Логический калькулятор для Windows - скачать по ссылке

Также можно скачать программу “Логический калькулятор” для Windows.

На данный момент логический калькулятор умеет выполнять следующее:

  1. Ввод и проверка переменных на корректность. Под корректностью подразумевается правильное написание букв и операций над ними
  2. Вывод таблицы истинности для выражения
  3. СКНФ и СДНФ

Калькулятор логических выражений онлайн

Можно также попробовать работу калькулятора логики онлайн (это другая версия, а не та, которую можно скачать выше по ссылке). Правда, лучше считать в нем с PC, с телефона может работать не корректно. Пример ввода:

¬¬A & ¬A V A

Калькулятор логических выражений: 4 комментария

    • 06.12.2021 в 11:00
      Permalink

      Калькулятор логических выражений

      Ответить
  • 03.03.2022 в 09:28
    Permalink

    Вычисли значение логического выражения при Х=4

    ((X > 4)→(X > 7))
    Помогите решить.

    Ответить

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *